CSFL Citations

Peer-reviewed papers citing CSFL 
 

  1. Sun, Y., Wu, Z., Wang, Y., Yang, J., Wei, G., & Chou, M. (2019). Identification of Phytocyanin Gene Family in Legume Plants and Their Involvement in Nodulation of Medicago truncatula. Plant and Cell Physiology.
  2. Mousavi‐Derazmahalleh, M., Bayer, P. E., Hane, J. K., Valliyodan, B., Nguyen, H. T., Nelson, M. N., ... & Edwards, D. (2019). Adapting legume crops to climate change using genomic approaches. Plant, cell & environment, 42(1), 6-19.
  3. Reiser, L., Harper, L., Freeling, M., Han, B., & Luan, S. (2018). FAIR: A call to make published data more findable, accessible, interoperable, and reusable. Molecular plant, 11(9), 1105-1108.
  4. Moreau, C., Hofer, J. M., Eléouët, M., Sinjushin, A., Ambrose, M., Skøt, K., ... & Ferrándiz, C. (2018). Identification of Stipules reduced, a leaf morphology gene in pea (Pisum sativum). New Phytologist, 220(1), 288-299.
  5. Aswani, V., Rajsheel, P., Bapatla, R. B., Sunil, B., & Raghavendra, A. S. (2018). Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions. Protoplasma, 1-9.
  6. Abdelrahman, M., Jogaiah, S., Burritt, D. J., & Tran, L. S. P. (2018). Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant, cell & environment, 41(9), 1972-1983.
  7. Zheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., ... & Xu, Y. (2018). Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic acids research, 47(D1), D1128-D1136.
  8. Sun, Yali, Zefeng Wu, Yujie Wang, Jieyu Yang, Gehong Wei, and Minxia Chou. "Identification of Phytocyanin Gene Family in Legume Plants and Their Involvement in Nodulation of Medicago truncatula." Plant and Cell Physiology (2019).
  9. Mousavi‐Derazmahalleh, M., Bayer, P. E., Hane, J. K., Valliyodan, B., Nguyen, H. T., Nelson, M. N., ... & Edwards, D. (2019). Adapting legume crops to climate change using genomic approaches. Plant, cell & environment, 42(1), 6-19.
  10. Garneau, M. G., Tan, Q., & Tegeder, M. (2018). Function of pea amino acid permease AAP6 in nodule nitrogen metabolism and export, and plant nutrition. Journal of experimental botany, 69(21), 5205-5219.
  11. Albanese, P., Manfredi, M., Re, A., Marengo, E., Saracco, G., & Pagliano, C. (2018). Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non‐model organism aided by transcriptomic data integration. The Plant Journal, 96(4), 786-800.
  12. Chen, F., Dong, W., Zhang, J., Guo, X., Chen, J., Wang, Z., ... & Zhang, L. (2018). The sequenced angiosperm genomes and genome databases. Frontiers in plant science, 9, 418.
  13. Jung, S., Lee, T., Cheng, C. H., Ficklin, S., Yu, J., Humann, J., & Main, D. (2017). Extension modules for storage, visualization and querying of genomic, genetic and breeding data in Tripal databases. Database, bax092.
  14. Serova, T. A., Tikhonovich, I. A., & Tsyganov, V. E. (2017). Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization. Journal of plant physiology, 212, 29-44.
  15. Meisrimler, C. N., Wienkoop, S., & Lüthje, S. (2017). Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth Markers. Proteomes, 5(1), 8.
  16. Sagi, M. S., Deokar, A. A., & Tar’an, B. (2017). Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to ascochyta blight infection. Frontiers in Plant Science, 8, 838.
  17. Santo, T., Pereira, R., & Leitão, J. (2017). The pea (Pisum sativum L.) rogue paramutation is accompanied by alterations in the methylation pattern of specific genomic sequences. Epigenomes, 1(1), 6.
  18. Holdsworth, W. L., Gazave, E., Cheng, P., Myers, J. R., Gore, M. A., Coyne, C. J., ... & Mazourek, M. (2017). A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Horticulture research, 4, 17017.
  19. Albanese, P., Melero, R., Engel, B. D., Grinzato, A., Berto, P., Manfredi, M., ... & Saracco, G. (2017). Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Scientific reports, 7(1), 10067.